

4TH GENERATION DISTRICT ENERGY

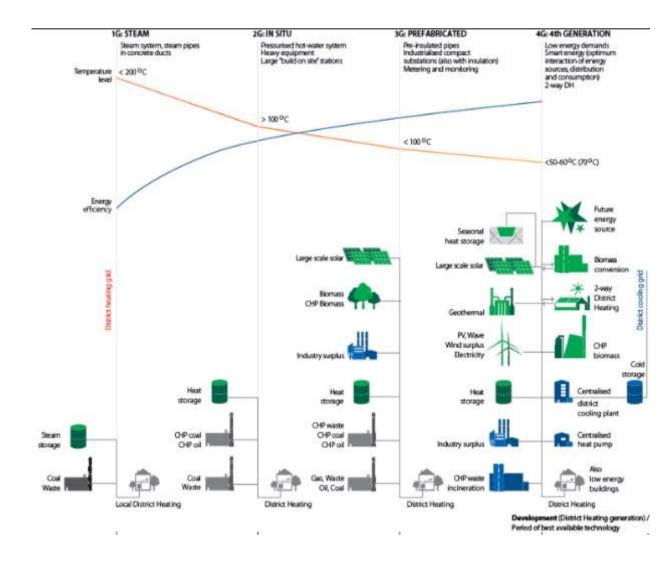
THE BACK BONE OF LIVEABLE AND RESILIENT CAMPUSES AND CITIES

Anders Dyrelund, Senior Market Manager, Ramboll Energy

4TH GENERATION DISTRICT ENERGY 06-12-2017

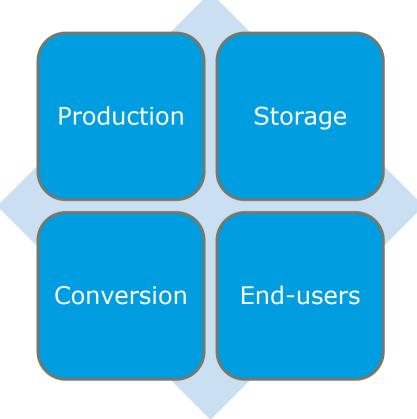
PRESENTATION AND BACK GROUND

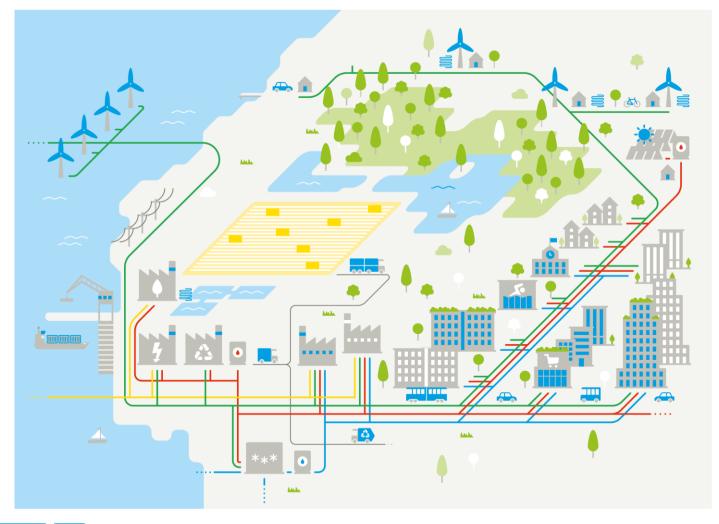
- Ramboll
 - Independent Multidisciplinary Consulting Eng. Comp. Owned by the Ramboll Foundation
 - 13.000 Employees 300 offices in 30 countries, mainly Northern Europe
 - World leading within several energy services
- Anders Dyrelund
 - Civ.Eng. in buildings, Graduate diploma in Economics
 - 1975-81 Ramboll (BHR)
 - 1981-86 Danish Energy Authority
 - 1986- Ramboll
 - 1980 The First Heat Plan in Denmark for Aarhus, PM
 - 1981- Copenhagen Regional DH, task manager/consultant
 - 1990- Consultancy services to more than 20 countries



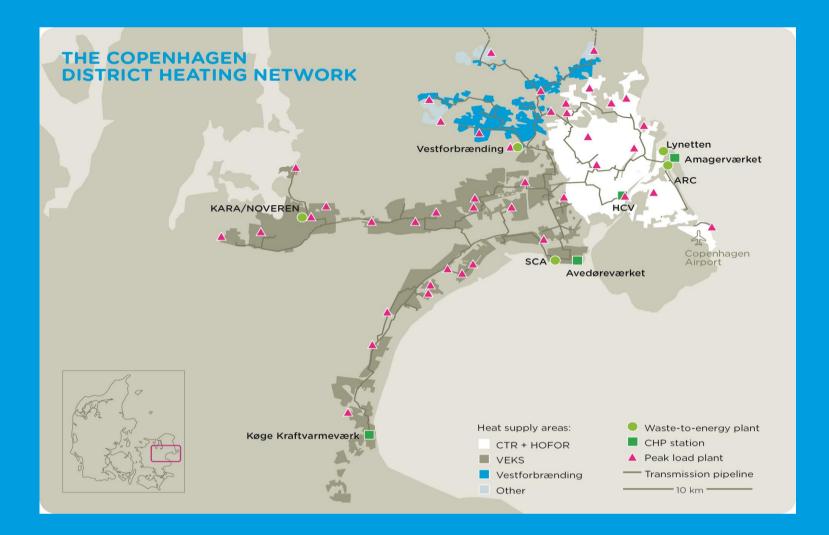
RAMBOLL

CHARACTERISTIC OF THE 4TH GENERATION ENERGY SYSTEM


- The 4 energy carriers are fully integrated with conversion technologies
- The HVAC systems in buildings are integrated with the district heating and cooling infrastructure
- Larger energy storages
- Low-temperature heating and hightemperature for cooling in buildings
- Integrate low quality and fluctuating low-carbon energy production
- More efficient conversion technologies for heating and cooling with CHP and heat pumps


THE SMART ENERGY SYSTEM INTERCONNECTING THE 4 ENERGY CARRIERS

- International power grid
 - Hydro power, but limited storage capacity
- International gas grid for natural gas (and biogas)
 - Large storages, CHP, industry
- City district heating grids
 - Storage for CHP, electric boilers, heat pumps and RES
- City district cooling grids
 - Storage for and optimal cooling in symbiosis with heat
- Buildings end-users the basis for 4^{th} GDH
 - Optimized building envelope
 - Low temperature heating
 - High temperature cooling
 - Adjust consumption to dynamic prices


OUR VISION IS TO CREATE LIVEABLE CITIES SMART SOLUTIONS FOR THE CITIZENS

THE DISTRICT HEATING AND COOLING GRIDS

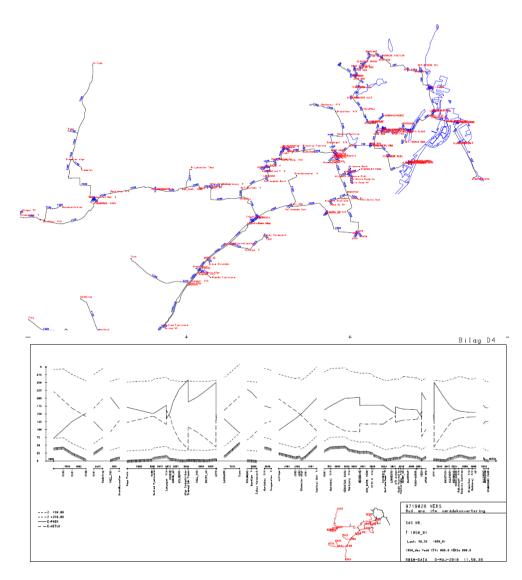
DEVELOPMENT OF DH&C PIPE CONSTRUCTIONS IN BRIEF IN 5 DECADES

- 1970 Concrete ducts, expensive, long life-time, but some failures, first preinsulated pipes in Løgstør, but poor quality
- 1980 Danish standard for DH pipes in the ground, Better quality of preinsulated pipes of various principles and competition
- 1990 Preinsulated pipes of good quality almost 100% market share, bonded system, welded muffs, no expansion joints, surveillance system
- 2000 Curved pipes, twin pipes <DN200, no-dig methods etc.
- 2010 Preinsuated pipes all over the world for DH&C
- Two options for DC systems in competition:
 - Preinsulated pipes: DH technology, no oxygen, Copenhagen DK
 - PE-pipes: Water supply technology, Frederiksberg DK

RAMBOLL

STANDARDS FOR DH PIPE SYSTEMS AND PIPES FREEDOM TO GOOD DESIGN LOWER COSTS

- Standards for use of preinsulated pipes
- Standards for the preinsulated pipes
- Safety regulations and classification, e.g. pressure and temperature
- Standards for specific components, boilers etc.
- Environmental requirements
- Guidelines for infrastructure in the ground in roads "the guest principle"
- Way of right, same importance as roads for public use
- Declaration in land-owners register



TYPICAL DESIGN PARAMETERS

- Pressure level: 6, 10, 16 or 25 bar max. pressure
- Maximal temperature: <85 °C < 95 °C <110 °C or <160 °C
- Normal off peak operation temperature: **65** °C
- Return temp.: as low as possible: < 40 °C < 50 °C
- Hydraulic design: Optimize based on life-cycle cost, use available pressure, but max 3,5 m/s, typical 10 mm/m for new networks, as much as possible in old networks
- Bonded without expansion joints for temp. < 110 °C
- Twin pipes < DN200 if regular flat trench
- Long trench, "gas pipe" technology

DISTRICT HEATING TRANSMISSION AND DISTRIBUTION SYSTEMS – ECONOMY OF SCALE

• Interconnect

- New waste CHP
- New gas CCGT CHP
- Heat accumulators
- DH&C stations

• Economy of scale

- Larger heat market
- Larger dimension
- Lower unit costs and
- Lower unit heat loss

			Price pr km Price pr. km pr.		Price pr. km pr.	Heat loss	
DN	Flow	Capacity	trench	capacity	annual sale	pr. km	
mm	m/s	MW	mio.Euro/km	Euro/km/MW	Euro/km/MWh/a	%/km	
100	1,0	2	0,6	265.775	66	2,96%	
200	1,5	13	1,0	75.726	19	1,08%	
300	2,0	38	1,6	43.488	11	0,50%	
400	2,3	69	2,1	30.197	8	0,28%	
500	2,6	125	2,7 21.622		5	0,15%	
600	2,9	203	3,3 16.110		4	0,11%	
700	3,2	301	3,7 12.222		3	0,09%	
800	3,5	431	4,1 9.632		2	0,07%	
900	3,5	551	4,8 8.711		2	0,06%	
1000	3,5	681	5,4	7.949	2	0,05%	
Preinsulated pipes			Supply tempe	rature	120	°C	
max design app. 130 °C			Return tempe	rature	60	°C	
Variable flow pumps			Pressure loss		10	mm/m	
Transmits base load			Max load hou	rs	4.000	hours	


A case based on Danish data

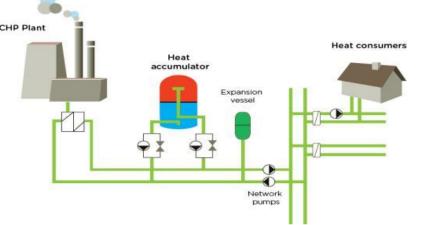
- 300 MW heat capacity 10 km from city
- Annual heat transmission 1,200 GWh/a
- 10 km DN700: 37 mio. Euro
- Annual heat loss 2%
- Pressure loss 2 x 10 Bar
- Transmission cost: 2,5 Euro/MWh

PRESSURE SECTIONING AND SHUNTS AN ALTERNATIVE TO HEAT EXCHANGERS

- Remove heat exchangers from transmission to distribution
- No heat exchangers from distribution to building system
- Only heat exchanger og tank for hot tap water preparation
- Pressure and temperature control + reduction
- Transient analysis to design pressure vessels to secure against water hammering
- Leak detection valves to close in case of leaking water

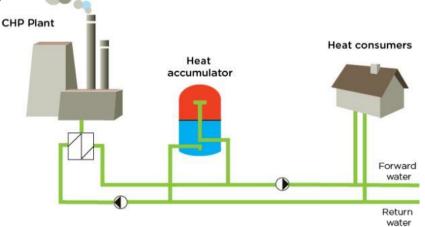
Fjernvarme Fyn Denmark:

- 70,000 consumers
- No heat exchangers
- High and low pressure
- Two large pressure vessels


THERMAL ENERGY STORAGES

ADVANCED HIGH TEMPERATURE HEAT STORAGE TANKS PRESSURIZED AND PRESSURE SECTIONED

- Temperature **above 100 °C** can be necessary due to consumer needs (poor heating installations),
- But the larger temperature the larger investment.
- Pressure sectioning can be necessary due to the pressure level in the DH grid and due to necessary pressure variations at the location
- Pressure sectioning increase costs, but is cheaper and more efficient than a heat exchanger connection
- Avedøre CHP plant, Copenhagen
 - 2 x 24,000 m³
 - Maximal temp **120 °C** actual temp. 105/50
 - Pressure diff: 10 Bar
 - Storage capacity 2,400 MWh, e.g. 300 MW in 8 hours



THE SIMPLE HEAT STORAGE TANKS PRESSURELESS AND DIRECT CONNECTION

- All CHP plants have heat storage tanks in Denmark
- Optimize operation of the CHP plant > 8 max load hours
- Can integrate surplus heat from waste, solar, wind etc.
- Optimize the operation of the DH system
- Maintain the pressure
- Provide peak capacity the coldest day
- Fjernvarme Fyn at Fynsværket power plant, Odense
 - 75,000 m³
 - Direct connection
 - Maximum temp **95°C**. 90/40
 - Storage capacity, 3,6 GWh, e.g. 300 MW in 12 hours

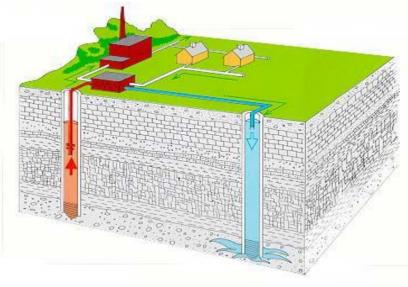
HEAT STORAGE PITS PRESSURELESS AND SECTIONED BY HEAT EXCHANGER

- Heat storage pit, an innovative combination of:
 - Landfills for establishing liners to a water proof pit
 - Heat storage tank for diffusers
 - Off shore technology for diffusers and pipes
 - A floating cover (newly developed)
- Impossible to avoid oxygen in the water, therefore sectioned by heat exchanger
- Maximal temp 85 °C up to 90 °C
- Storing weekly or monthly fluctuations
- The driver for this development in Denmark has been to increase share of solar heat up to 60%

HEAT STORAGE PITS PRESSURE-LESS AND SECTIONED BY HEAT EXCHANGER

- Test plants with subsidy
 - 10,000 m³ Test plant in 2010 in Marstal
 - 70,000 m³ Full-scale test plant 2012 in Marstal
 - 62,000 m³ Full-scale test plant 2014 in Dronninglund
- Commercially, without subsidy, new floating cover
 - 125,000 m³ Gram district heating 2015
 - 200,000 m³ in Vojens district heating 2015
 - 70,000 m³ in Toftlund district heating 2017
 - 150,000 m³ in Løgumkloster district heating 2017/18

Several more in the pipeline, may be 100 in 2025

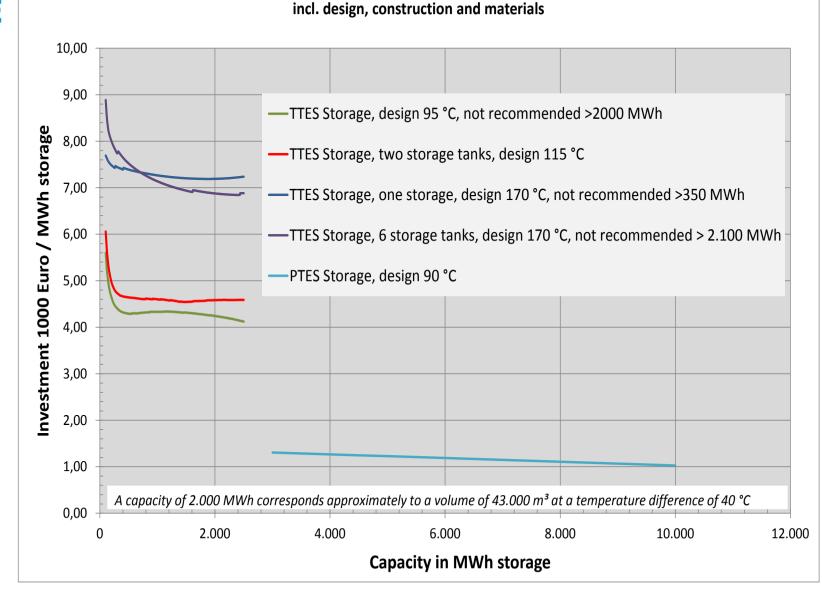


CHILLED WATER STORAGES, REDUCING THE DAILY COOLING PEAKS

- Steel tank, district heating technology, Halmstad
- Concrete chamber, water supply technology, e.g. under new road in Carlsberg city
- Cold water storage, heat storage pit technology
- Ground source cooling (ATES)

ECONOMY OF SCALE FOR HOT WATER STORAGES EUR/MWH HEAT STORAGE CAPACITY

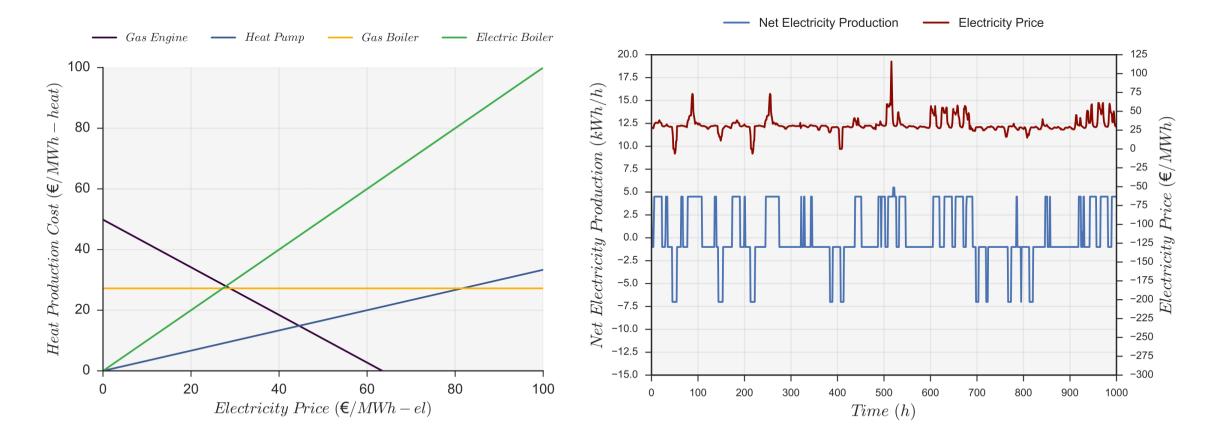
- One family house, 0.16 m³ 300,000
- Large building, 4 m³ 40,000
- DH tank, 160° C 7,000
- DH tank, < 95° C 4,000
- Storage pit, 150,000 m³ 800
- Pit alone, 100,000-200,000 m³ 500
- Marginal extension of the pit 200
- Sources: Henrik Lund and Ramboll



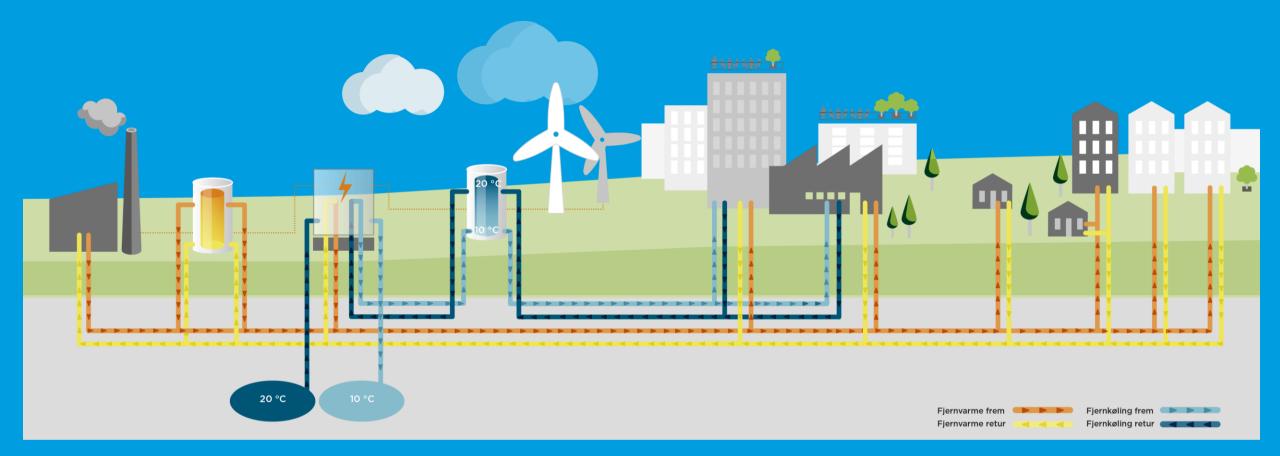
ECONOMY OF SCALE

Investment costs storage tanks (TTES) and storage pits (PTES)

RAMBOLL

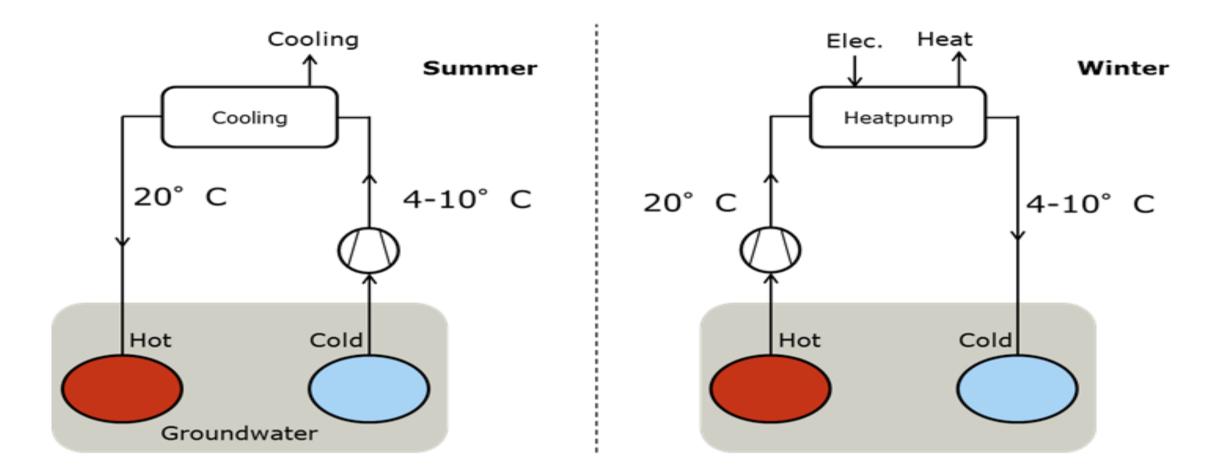

GRAM CONSUMER OWNED DISTRICT HEATING A MIX OF TECHNOLOGIES FOR INTEGRATION OF RES

- Heat production 30 GWh
- 120,000 m3 heat storage pit
- 44,000 m2 solar panels (61%)
- A 10 MW electric boiler (15%)
- A 900 kW heat pump (8%)
- Industrial surplus heat (8%) and
- A 5 MWe/6 MWth CHP gas engine (8%)
- Gas boilers for spare capacity (0%)



SYSTEM RESPONSE ON FLUCTUATING ELECTRICITY PRICES A COST EFFECTIVE "VIRTUAL" ELECTRICITY STORAGE

COMBINED HEATING AND COOLING WITH HEAT PUMPS THE SECRETS OF DISTRICT COOLING

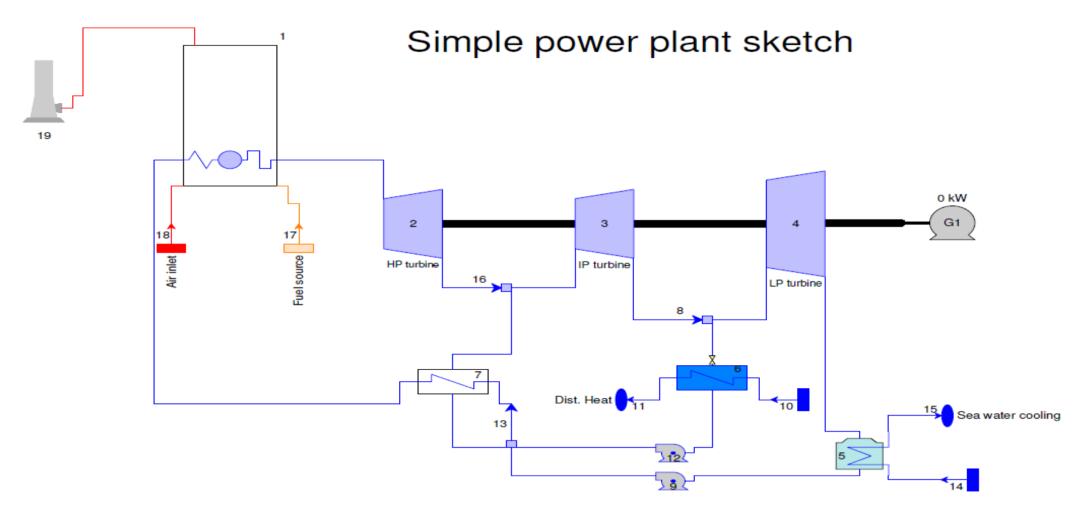


THE SECRET OF DC A KEY TO SCREENING THE DC POTENTIAL

- Save investment, which can justify the network
 - Simultaneity factor and flexibility of capacity
 - Storage levels daily fluctuation and reduce peak
 - Economy of scale for chillers and heat pumps
- Optimize electricity consumption with storage
- Heat pump has 3 modes of operation:
 - Cogeneration of heat and cold COP=5-7
 - Produce heat / waste the cooling, COP= 3-4
 - Produce cooling / waste the heat, COP= 7-8
- Better use of ground source cooling, ATES
- Høje Taastrup district heating, Copenhagen
 RAMBGLL

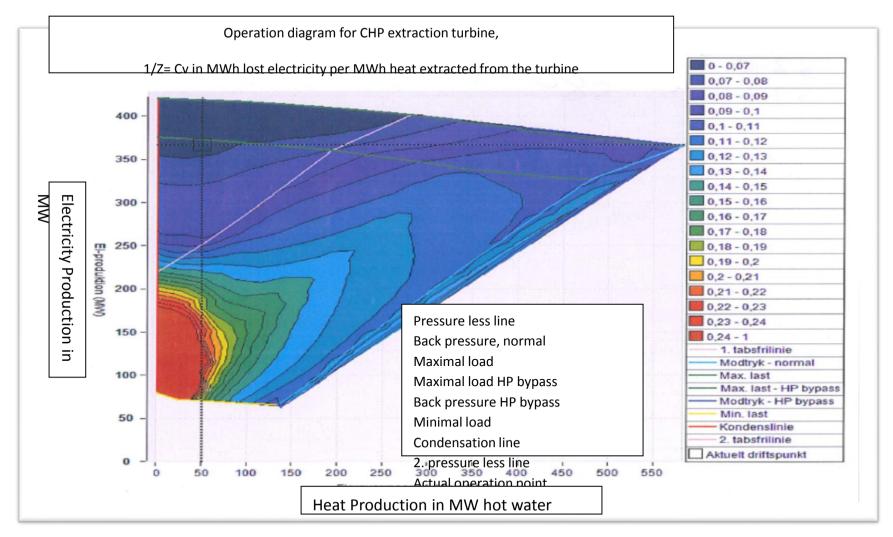
PRINCIPLE OF GROUND SOURCE COOLING (ATES)

ON NOISY CHILLERS ON THE ROOF TOOP



4TH GENERATION DISTRICT ENERGY 06-12-2017

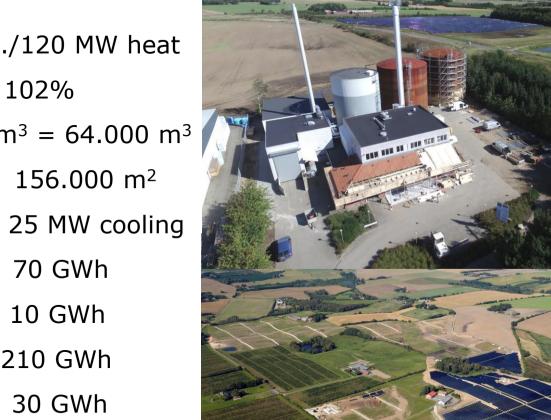
COMBINED HEAT AND POWER, CHP



CHP, FYNSVÆRKET DK EXTRACTION PLANT – SIMPLE DIAGRAM

CHP EXTRACTION PLANT – MIX OF HEAT AND POWER FYNSVÆRKET DK

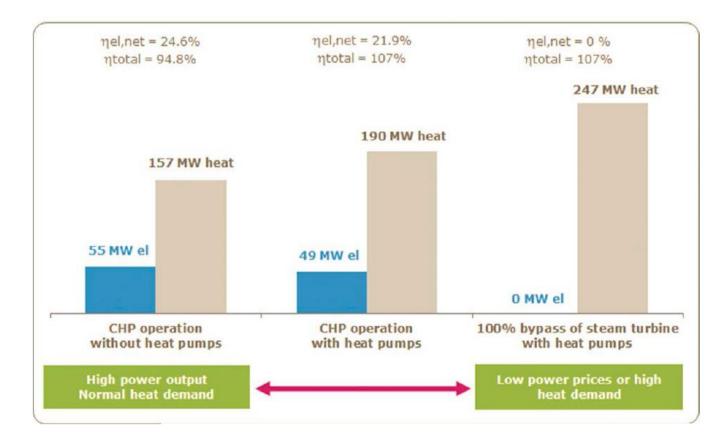
CHP POTENTIAL FOR NEW POWER GENERATION COMPARED TO NEW POWER ONLY PLANT


- Assuming that a good 300 MW CCGT condensing plant is the baseline (on the margin), corresponding to the new CHP plants
- Calculation of the fuel consumption for production of heat by various sources with the same fuel (small but never zero)

Cases	Reference plants			Today		DK today			
		300MW	300MW				60MW	300MW	300MW
Poor Reference power condensing plant	Heat only	CCGT	CCGT	1,5-5 MW	1,5-5 MW	3 MW	CCGT	CCGT	CCGT
gas fuelled CCGT on the margin	boiler	elec.heat	HP	Gas eng.	Gas turb.	Gas eng.	Backpres.	extraction	extraction
Maximal temperature, °C				160	160	120	120	120	90
Heat efficiency Backpressure	90%			40%	50%	52%	46%	40%	37%
Power efficiency Backpressure				35%	30%	38%	45%	51%	54%
Total efficiency of plant, LHV	90%			75%	80%	90%	91%	91%	91%
Power to heat ratio				0,88	0,60	0,73	0,98	1,28	1,46
Power efficiency of Ref plant, LHV		58%							
Estimated marginal loss from central plant		6%	6%	6%	6%	4%	2%	0%	0%
Ref power eff. local grid		55%	55%	55%	55%	56%	57%	58%	58%
Extraction Z-factor or COP			3,0					5,7	9,3
Extraction of hea MWh fuel/MWh heat								0,30	0,19
Heat productior MWh fuel/MWh heat	1,11	1,83	0,61	0,90	0,90	0,61	0,45	0,30	0,19
Heat loss in district heating grid	0%	0%	0%	5%	5%	5%	10%	10%	10%
Heat supply MWh fuel/MWh heat	1,11	1,83	0,61	0,94	0,95	0,64	0,50	0,34	0,21
Savings compared to a boiler	0%	-65%	45%	15%	15%	42%	55%	70%	81%
EE directive, total saving of heat and power: good CHP > 10%				5%	7%	19%	22%	24%	25%

GAS FUELLED CC CHP, ABSORPTION HEAT PUMP AND LARGE-SCALE SOLAR HEATING IN SILKEBORG

- Gas fuelled CC plant 106 MW elec./120 MW heat
- Total efficiency of the plant 102%
- Heat storage tanks $4 \times 16.000 \text{ m}^3 = 64.000 \text{ m}^3$
- Large-scale solar heating
- Absorption heat pumps
- Heat production solar
- Heat pump from solar
 10 GV
- Heat production CHP (market) 210 GWh
- Heat pump condensation
- Heat production boilers
 80 GWh



WASTE INCINERATION AND BIOGAS

ARC COPENHILL – NO WASTE TO BE DUMPED AT LANDFILLS ENERGY PRODUCTION - FLEXIBILITY - AND LIVEABILITY

FROM SLUDGE AND WET WASTE TO BIOGAS FROM LOW COST ELECTRICITY TO H2 TO NATURAL GAS

- Biofoss, Lynetten, Copenhagen
 - Sludge to biogas
 - Biogas to city-gas for cooking and process energy
 - Sludge incineration to district heating
- Biofoss, Avedøre Holme, Copenhagen
 - Sludge to biogas
 - Biogas to natural gas and CO2
 - Sludge incineration to district heating
 - Power to H2 (test)
 - H2 and CO2 to natural gas (test)
- Nymindegab MOD DK

RAMBOLL

• Wet waste to biogas to CHP to heat and power

4TH GENERATION DISTRICT ENERGY 06-12-2017

LARGE-SCALE SOLAR WATER HEATING

LARGE-SCALE SOLAR HEATING DEVELOPED IN 10 YEARS IN DK

- Marstal DH, 18,000 m2 with subsidy
- Danish manufacturer ArconSunmark
- Status 2017, installed without subsidy
 - 100 plants in DK
 - Total panel area 1,100,000 m2 in DK
 - +10,000 m2 in Norway
 - +39,000 m2 in Chile
 - +xx m2 in USA
 - 155,000 m2 in Silkeborg, so far the largest
- Heat Plan Denmark in 2035
 - 8 mio.m2 estimated in DK

COST OF LARGE SCALE SOLAR FACTOR 3 FROM HOT TO MILD CLIMATE

Production from 10.000 m ² DH solar heating plant, field									
Temperatures in panels		Low DH temperature			High DH temperature				
Climate zone		Mild	Warm	Hot	Mild	Warm	Hot		
Annual solar radiation	kWh/m ² panel	1.150	1.350	2.300	1.150	1.350	2.300		
Average out door temperature	°C	9	13	16	9	13	16		
Supplytemperature	°C	60	60	60	90	90	90		
Return temperature	°C	40	40	40	70	70	70		
Expected production	kWh/m ² panel	550	850	1.500	450	700	1.300		
Investment in plant 10.000 m2	€/m ² panel	200	200	200	200	200	200		
Annual O&M cost 10.000 m2	€/m ² panel	2	2	2	2	2	2		
Investment in plant 10.000 m2	€/MWh/a	364	235	133	444	286	154		
Capital costs, 30 year 3%	€/MWh	19	12	7	23	15	8		
Annual operation costs	€/MWh	4	2	1	4	3	2		
Average production cost	€/MWh	22	14	8	27	17	9		

ECONOMY OF SCALE FOR SOLAR HEATING FACTOR 3-6 FROM FIELD TO BUILDING ROOF-TOP

Economy of scale for solar heating, warm climate zone, low DH temperature									
Typical heat consumer		Building, roof top			District heating, field				
Size of consumer		Small	Medium	Large	Small	Medium	Large		
Solar panel area	m ²	5	200	2.000	2.000	10.000	20.000		
Expected production	kWh/m ² panel	750	800	850	850	850	850		
Total annual investment	€/m² panel	1.000	450	400	380	200	190		
Annual O&M cost	€/m² panel	9	7	5	4	2	2		
Investment in plant	€/MWh/a	1.333	563	471	447	235	224		
Capital costs, 30 year 3%	€/MWh	68	29	24	23	12	11		
Annual operation costs	€/MWh	12	9	6	5	2	2		
Average production cost	€/MWh	80	37	30	28	14	13		

THANK YOU FOR YOUR ATTENTION QUESTIONS & ANSWERS

AD@RAMBOLL.COM +45 51 61 87 66 HTTPS://STATEOFGREEN.COM/EN/PROFILES /RAMBOLL

4TH GENERATION DISTRICT ENERGY 4TH GENERATION DISTRICT ENERGY 06-12-2017