🐺 The University of Texas at Austin

Supporting A Fast Track Mission-Critical Campus Healthcare Expansion

JUAN M. ONTIVEROS, P.E.

AVP – UTILITIES, ENERGY AND FACILITIES MANAGEMENT

🐻 The University of Texas at Austin

New Campus Master Plan 5.5 million SF Completed June 2012

New Medical School

1-35

PROGRAM ELEMENT	GSF
Education and Administration Building	75,000
Research Building and Vivarium	240,000
MOB Phase 1	200,000
Parking Structure (1,000 spaces)	325,000
Intra-Professional Education (IPE)*	+/- 50,000

Not included in Phase 1 planning budget.

Table 2b. Teaching Hospital and MOB Program

PROGRAM ELEMENT	GSF
Hospital (220 beds)	480,000

Phase 2 - 1,200,000 square feet in 5 to 10 years

Master Plan Completed April^{® 2013}

Phase 1 1 million square feet

72

Methodology

Develop Utility Master Plan in 3 months

- Used building type & actual metered energy use per GSF for existing campus buildings
 - Estimate annual & peak energy& water needs
 - Determine plant total capacity & rate impact
 - Used Termis chilled water and steam model
 - Size and plan distribution system
- Include build out of 2.2 million SF for Phase 2&3
- Include 1 million more new square feet on the campus

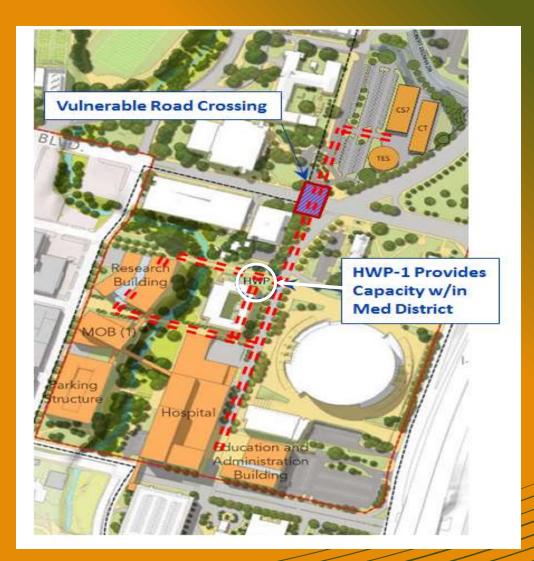
Over Arching Objectives

New chilling station

- Capacity & efficiency enough to prevent negative impact to campus
- Expandable to address subsequent phases of district
- Continue philosophy of loops & redundant service
- •What is impact of other new space?
- Avoid power plant expansion
- Avoid conflict between Peak Steam and Peak
 Power

Projected Loads Main Campus Load Growth •6,000 Tons •Phase I •Dell Medical School; • 7,000 Tons, 6 MW, 30,000 lbs/hr Hospital • 1,700 Tons, 30,000 lbs/hr Phase II- Medical School • 5,100 Tons, 4MW, 25,000 lbs/hr

Capacity


- •Chilled Water System
 - 15,000 tons chilled water
 - 6 -2,500 ton chillers
 - 5° F approach cooling tower
 - Expandable to 20k tons
 - 5.5 million gallon TES
 - Stratified Water
 - Dedicated pumping
 - More than 5 MW load shifting capacity

Capacity

Chilled Water

- Proven Existing System
- Tunnel + Direct Buried
- Station Redundancy
- Heating Water
 - New System
 - Fuel Diversity
 - Geographic Diversity
- Single Points of Failure
 - N+1 pumps and tower cells
 - Looped Piping
 - Main tie main switchgear

Resiliency

- Multiple Water Sources
 - Recovered
 - Reclaimed
 - Irrigation
 - Domestic
- O&M Considerations
 - Bridge crane and monorails
 - Standardize components
 - Catwalks
- PLC Control Systems
 - Programming for failure

Efficiency

• Water

- Recovered Water System
- Heat Pump Chiller
 - 17,000,000 gal/year + Chemicals
- Gas
 - Heat Pump Chillers
 - •\$287,000/ year
- Electricity
 - Optimization
 - •Maintain the "Sweet Spot"
 - •Pumping in harmony

• Up to 25,000,000 kWh/year savings vs. conventional plant

SUMMARY CS7 / TES-2 BENEFITS • Lower campus annual kW/ton

- 4 years at .64 kW/ton annual average
- New plant expected at .55 KW/ton
- Offset 6 MW of peak demand
 - Avoids additional CHP capacity need
- Improves campus hydraulics
- Off-loads plants in need of renewal
- Room for expansion
 - 5,000 tons more
 - 1,800 tons / 30 MMBtu with HPC's
 - 12 MMBtu via boiler

