

Bottom Up Versus Top Down

Approaches Towards Low Energy Neighbourhoods in Austria

<u>Anna M. Fulterer</u>, F. Mautner, D.Venus, I.Leusbrock Heimo Staller

AEE - Institute for Sustainable Technologies (AEE INTEC) 8200 Gleisdorf, Feldgasse 19, AUSTRIA

Bottom Up

Energy concept

Detailed Plans

Bottom Up

- Existing infrastructure
- Data
- Potentials
- Targets

Municipality: Develop Strategies

Demand for Building and Energy

www.aee-intec.at AEE – INSTITUTE FOR SUSTAINABLE TECHNOLOGIES

Demand for Building and Energy

Municipality: Develop Strategies

Investigate and Document

- Existing infrastructure
- · Potentials
- Targets

Demand for Building and Energy

Municipality: Develop Strategies

Investigate and Document

- Existing infrastructure
- · Potentials
- Targets

Builder / planner / investor

•

Bottom Up <> Top Down

Bottom Up:

- Starting point is the single building or building group
- Role of energy provider
- Integration into local grids
- Main motivation: building owner

Top D

Top Down:

- Starting from community / town
- Energy provider is a main stakeholder
- Buildings are seen as end-consumers
- Main motivation: community, energy provider

Focus

- Who drove the process?
- What was the demand?
- Sucessful integration of buildings / energy system

of community?

Dieselweg: Renovation of a neighbourhood of multi family houses in Graz

Starting point:

AEE INTEC

- Suburban residential area in Graz
- 14038 m², 204 appartments
- Heated by single devices (fossil fuel or electric devices)
- low envelope quality

Driving Forces:

- Low income due to vacancies (high energy consumption, poor comfort)
- Need for good publicity and investment return

Aim: Show the way towards a solarautarkic neighbourhood

> Heating demand: BEFORE: 142 - 225 kWh/m²a AFTER: 9 - 12 kWh/m²a

Dieselweg: Renovation of a neighbourhood of multi family houses in Graz

AEE INTEC

Innovative technical solutions:

- HVAC via facade (heating, ventilation)
- Solar thermal and PV
- Heat pump and large hot water storage for each building
- Ventilation by small units (one per appartment)

Tools:

Baseline Study

3.000 ltr

- Calculation of Energy consumption
- Simulation (building, HVAC)
- Monitoring of energy consumption and comfort

Funding:

- via subsidies, funding for innovations, research projects
- higher income due to slightly higher rental fees and low vacancies

20.000 ltr

Dieselweg: Renovation of a neighbourhood of multi family houses in Graz

AEE INTEC

District heating and Gas grids

Successful integration into existing grids?

- HEAT: No connection to district heating–, autarkic' island solution per building
- POWER: Connected to grid. Generated power is fed into the grid (legislative and financial reasons)

Kapfenberg: Renovation of a multi family house in Austria

Starting point:

AEE INTEC

- Residential area in the north of Styria
- 2845 m² 36 appartments
- Heated by single devices (fossil fuel or electric devices) or small central heating systems, low envelope quality

Driving Forces:

Low income due to vacancies (small appartments, high energy consumption, poor comfort)

 Need for good publicity and investment return

Aim: Renovation to Plus Energy Residential Building

Heat + DHW consumption BEFORE : 108 kWh/m²a AFTER: ~30 kWh/m²a

Kapfenberg: Renovation of a multi family house in Austria

AEE INTEC

Innovative technical solutions:

- HVAC via facade (heating)
- Solar thermal and PV
- Connected to district heating (backup, load peaks)
- Central ventilation with heat recovery / heat recovery by heat pump for DHW

Tools:

- Baseline Study
- Calculation of Energy
 consumption
- Simulation (building, HVAC)
- Monitoring of energy
 consumption and comfort

Funding:

- via subsidies, funding for innovations, research projects
- higher income due to slightly higher rental fees and low vacancies

Kapfenberg: Renovation of a multi family house in Austria

The area east of the residential building was already connected to DH (

- Successful integration into existing grids?
 - HEAT: Active energy generation (HP+ heat recovery, solar collectors). DH as backup and for load peaks
 - POWER: PV energy fed into grid, grid power for HP and other requirements (legislative and economical reasons)

Energy Master Planning Processes of communities

Concepts I T EnergY

AEE INTEC

 Main driving force: energy strategy of communities

Status analysis

- Energy relevant data
- Energy consumption and GHG emissions
- Energy Potentials

Strategy development

- Create scenarios for the future
- Spatial modelling and simulation
- Derivation of measures

Implementation

On levels of organisation, planning, project and realisation

Quality assessment and monitoring

Aim: Gather Information Methods: use GIS and various sources Open questions: best way to gather data (Energy provider, community, final consumer...). Privacy

Definition of measures: Renovation of heat generation, buildings, use renewables etc.

Give access to information Open questions: How to require implementation (eg local financial subsidies programmes, legally binding master plan ?)

Methods - Workflow

Spatial energy and infrastructure analysis and modeling GIS, statistics, energy balancing, roadmapping

Data acquisition, geodatabase management

Pre-processing (check, verify, extend database)

Spatial analysis / spatial modeling

 Characterization of existing infrastructures, energy demands and local resources

Renovation and modernization roadmap

- Building renovation roadmap based on hourly HWB* calculation (acc. to EN ISO 13790)
- Scenarios for increased share of renewables in heating sector and DH extension

Dynamic building and utility network simulation
 Automated workflow coupling geodatabase with IDA ICE building simulation framework

In-depth analysis / simulations in high temporal resolution physical models, (dynamic) simulation

Spatial analysis and modeling

Setting-up geodatabase

Final geodatabase

Geolocation of all buildings and energy supply networks
Full characterisation of residential sector for basic energetic analysis
Only partial characterisation of industry, commercial and public sector
Land use / zoning

Salzburg Schallmoos: EMP for a quarter in Salzburg

Starting point:

AEE INTEC

- Industrial wasteland, in Graz
- Need of new residential space in a growing town
- Investors have taken over the area

Driving Forces:

- Investor: Need for investment return
- Town and Neighbours: Upgrade of the area
- Town: Need for appartments
- Town: No further emissions due to already bad air quality

Aim: Plan and build a new urban district. Reach Plus energy and realize energy exchange between residential and commercial areas

Innovative technical solutions:

- Solar thermal collectors
- Foundation: Ground heat collector
- Heat pumps
- Energy exchange between commercial and residential area. (Summer heat is stored for heating in winter)

part 1: commercial / office + residential

> part 2: residential

Results:

Consumption (residential): 35 kWh/m²a Plus Energy **NOT REACHED**

- PV was not realized
- no energy exchange for cooling of supermarket
- less energy demand for cooling

AEE INTEC

- · Load profiles for residential areas
- Simulation of the model with TRNSYS, Calculation of Variants and Optimization with SIMPLEX (simulation tool for heat networks)

Tools:

- Baseline Study
- Calculation of Energy consumption
- Simulation (building, HVAC) TRNSYS, PHPP, simplex (heat network)
- Monitoring of energy consumption and comfort

Funding:

- via subsidies, funding for innovations, research projects
- Contracting for cooling energy

DH was planned for this area already before 2010

Successful integration into existing energy system?

HEAT:

- Neighbouring buildings as first backup, district heat as second backup
- Heat/cooling exchange with neighbouring building is technically possible. Organisationally not
 POWER:
- Connected to power grid

part 1: commercial / office <u>+ r</u>esidential

> part 2: residential

Process Design of Energy Master Planning in Austria

Source: CraveZero

Example: Salzburg Lehen

Example Salzburg-Lehen: Lowtemperature SDH grid

Solar thermal system connected to a lowtemperature heating network supplying around 68,000m² of heated floor area

2,048m²_{gross} flat plate collector field (mounted on 13 separate roofs)

200 m³ energy storage

Auxiliary heating: storage integrated HP (160

kW_{th}) + district heating

DH supply temperatures: 65/35

Monitoring: 07/2013 – 06/2014

AEE INTEC

Example: Salzburg Lehen

Solar thermal system connected to a low-temperature heating network supplying around 68,000m² of heated floor area

Conclusion and Outlook

TOP DOWN:

- Communities define energy and emission strategies
- Development of a common procedure for land use and energy planning
- Energy planning to accompany land use planning

BOTTOM UP:

- Provide information on local energy supply system
- Potential for renewable energies
- Cooperation with neighbours

Conclusion and Outlook

- TOP DOWN:
- Communities define energy and emission strategies
- Development of a common procedere for land use and energy planning
- Energy planning to accompany land use planning

Data aquisition (consumption, return temperature)

Data exchange (GIS, BIM, ...)

• BOTTOM UP:

System optimisation (buildings and energy systems) Steering measures

- Provide information on local energy supply system
- Potential for renewable energies
- Cooperation with neighbours

Thank you for your Attention

Kirchberg am Walde: Partial Renovation of a rural school

AEE INTEC

Starting point:

- Agricultural and forestry school in Upper Styria
- >7680 m² 36 appartments
- Dormitory, canteen, school building

Driving Forces:

- Bad comfort and need for more space
- Need for good publicity (to have enough pupils)

Aim: Rebuilding of the dormitory house, thermal renovation of all buildings, where possible

Heat + DHW consumption BEFORE : xxx kWh/m²a AFTER: 14,4 kWh/m²a

Kirchberg am Walde: Partial Renovation of a rural school

Income via PV feed in

No optimization of heat network Single building approach

AEE INTEC