Multi-Criteria Decision Analysis in Energy Master Planning

Dr. Mike Case ERDC/CERL October 2020

Distribution Statement A - Approved for public release; distribution is unlimited.

Why Do We do Analysis?

TO SUPPORT A DECISION!

- Compare alternatives
- Decision metrics criteria
- Some criteria may be more important – who decides?
- Quantitative vs. qualitative
- Record of decision process e.g.
 NEPA requirements in U.S.

	Alternative +	Investment +	Total Equivalent + Annual Cost
	τ	τ	(Dollars/Year) T
+	Baseline	0	12,249,182
+	Basecase	0	17,096,926
+	Better Case	29,111,488	15,736,697
+	Best Case	47,955,068	14,066,687
+	Best Case w 50% Renewables	71,635,072	11,779,615
+	Best Case Net Zero	185,848,672	13,318,683

- This presentation will describe a process to evaluate multiple criteria to support decision making
- Tool is available in the System Master Planning Tool (SMPL)
 - Working example in table range of efficiency and generation measures up to and including islanded operation

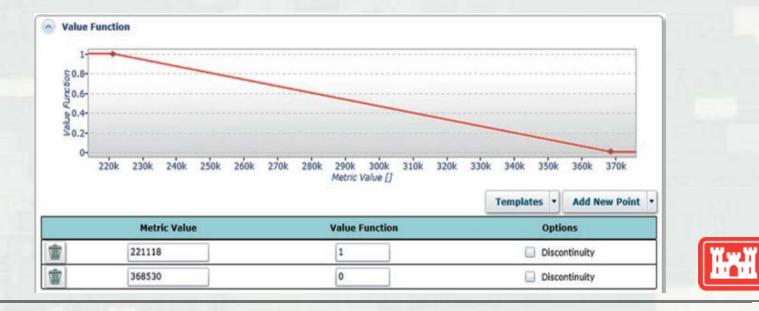
Multi-Criteria Decision Analysis (MCDA)

- Method(s) for supporting decision-making when there are multiple criteria, often conflicting. Sometimes called MCDM*
- Define the context and the decision to be made
- Identify stakeholders
- Develop the decision model
 - Describe criteria for decision making
 - Stakeholders assign criteria weights
 - Many models pros and cons discussed in the literature
- Delineate alternatives
- Rate alternatives and compare may need to iterate

$$Ai = \sum_{j=1}^{n} Cj \, x \, Wj, for \, j = 1, 2, \dots n; i = 1, 2, \dots k$$

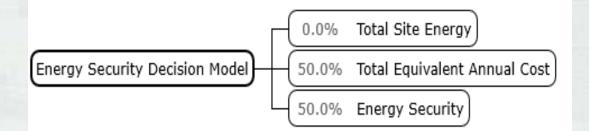
BUILDING STRONG®

Stakeholder Decision Criteria

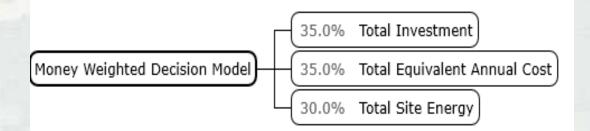

- Multiple stakeholders may have different criteria and priorities
 - Can develop multiple stakeholder models and compare
- Typical Decision Criteria
 - Investment and life cycle costs (\$)
 - Energy Site and Source (MWhr)
 - Energy Security (electrical, thermal)
 - Maximum Single Event Downtime (time)
 - Robustness (% required energy available)
 - Energy availability (% time required energy available)
 - Community opinion survey
 - ► Expert opinion e.g., Delphi Method

Assigning A Value Function to Criteria

- Assign each criterion a value between 0 and 1
- Below, any cost below \$220K is assigned the highest value of 1.0, while any cost above \$370K is assigned a value of zero.
- Assignment of value requires stakeholder participation
- Metric value may be pulled directly from simulation or input manually based on expert opinion.



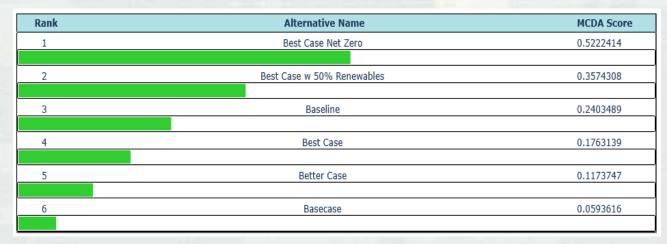
BUILDING STRONG

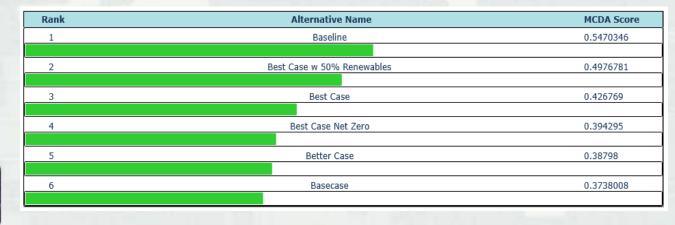


Decision Model Examples

Energy Security Weighted

Cost Weighted





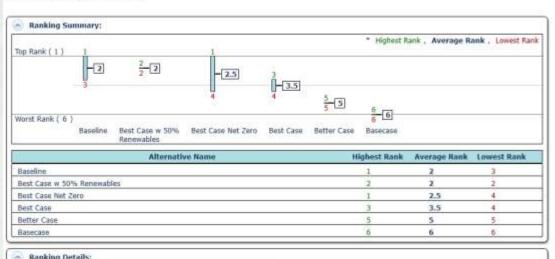
Weighted Alternative Comparison

Energy Security Weighted

Cost Weighted

Sensitivity Analysis

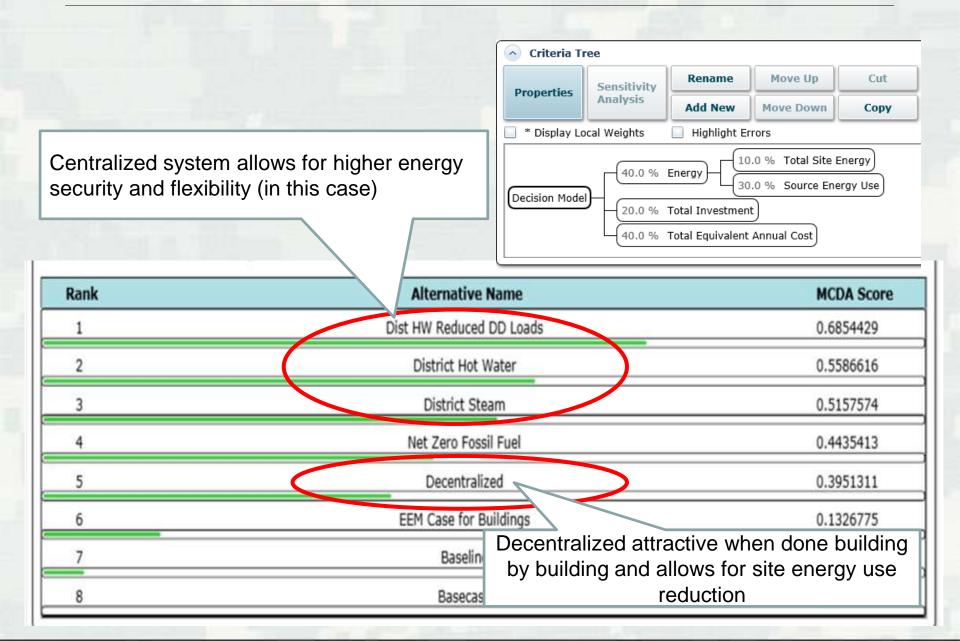
- How sensitive is the ranking to rating weights?
- As a criterion weight is adjusted, alternative rankings may change
- Crossover points can be identified
- Helps stakeholders to assess relative importance of weightings



Comparison of Decision Models

- Different stakeholder groups may have different priorities
- 50% renewable energy option was 2nd choice of both models and may represent best compromise choice between resilience and cost

Decision Analysis - Results


MCDA Models Alternatives	Energy Security Decision Model	Money Weighted Decision Model
Baseline	3	1
Best Case w 50% Renewables	2	2
Best Case Net Zero	1	4
Best Case	4	3
Better Case	5	5
Basecase	6	6

BUILDING STRONG_®

Another Example

Relative Sensitivity

- Some alternatives more sensitive to weighting
- Most rankings barely change with energy weight
- Net zero alternative is highly sensitive to energy weight

Summary

- Multi-Criteria Decision Analysis (MCDA) can support stakeholders in using quantitative and qualitative information to make decisions
- Development of alternatives, criteria, and weights provides an opportunity for stakeholder participation and buy-in
- MCDA can provide a record of the decision making process
- Sensitivity analysis can help to determine relative importance of weighting and decision crossover points
- Models from different stakeholder groups can be compared and help to identify compromise solutions

