Best Practices from Energy Master Planning at three North American Universities

October 16, 2020

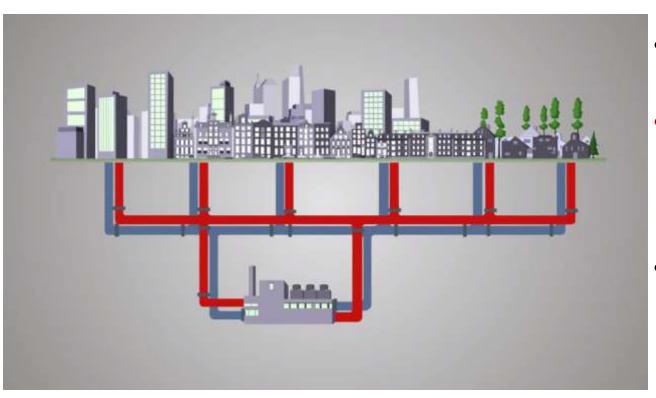
Laxmi Rao, International District Energy Association

Agenda

- **About District Energy**
- **Benefits of Energy Master Plans (EMP)**
- Landscape for Community EMP
- **Incorporating Objectives and Constraints**
- **Developing Energy Master Plans**
- Energy Master Plans of Three North American Campuses – Best Practices and Learnings

ABOUT IDEA

Formed in 1909: 111th year


501 (c) 6 non-profit industry association; near Boston, MA USA

2500+ members – 27 nations 56% end-user systems, majority in North America

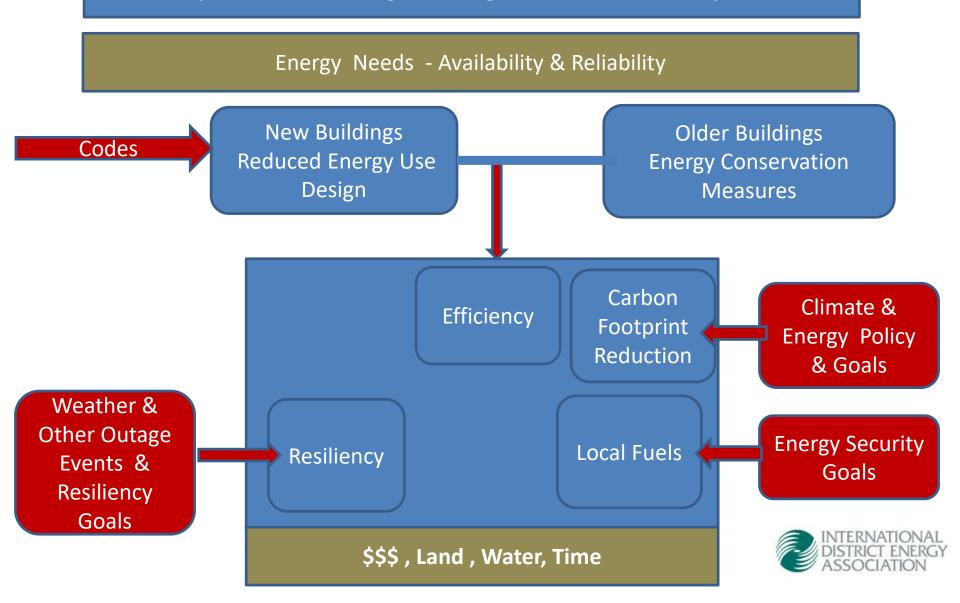
Major urban utilities, public/private universities & colleges, healthcare, pharma, airports, industry, etc.

District Energy Community Scale Heating & Cooling

- Underground network provides urban infrastructure and enables "<u>combining</u>" heating & cooling loads of multiple buildings
- Aggregated thermal loads creates <u>scale</u> to apply fuels, technologies not feasible on single-building basis

- Enables CHP & fuel flexibility
- Connects thermal energy sources with users
- Re-circulate
 energy dollars in
 local economy

Benefits of Energy Master Plans


- Leading activity that helps plan the energy systems for managing growth or changed functions
- Provides pathways for risk mitigation
- Helps evaluate stakeholder objectives overlaid on technical alternatives
- Enables looking beyond a buildings energy conservation project and study alternatives that are feasible across clusters of building

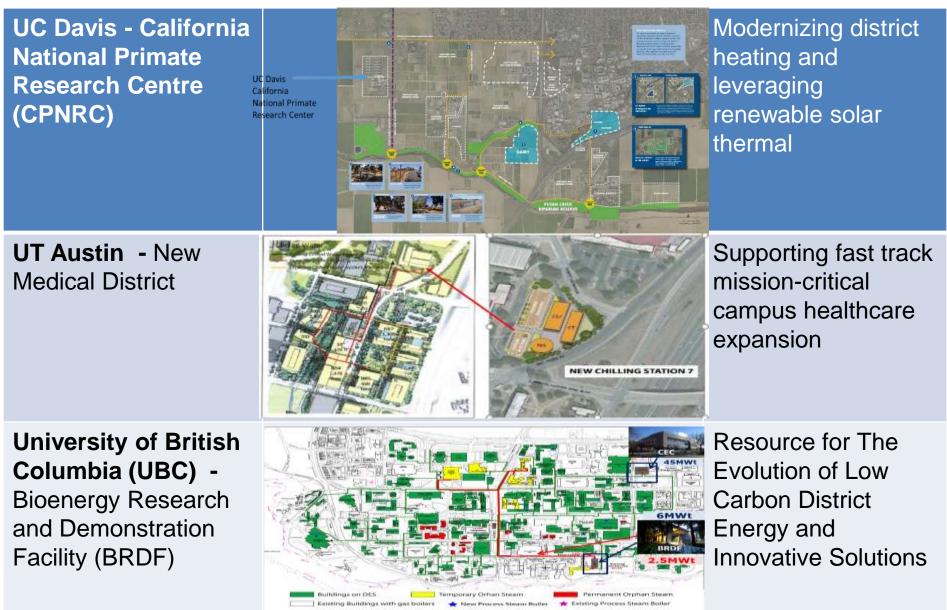
Landscape for **Community Energy Master Planning EFFICIENCY** Climate Zone Building RELIABILITY types and sizes **ECONOMICS** The **Buildout** cost of Phasing Built electric Rate energy & cost Environment of gas power Land expectation Life Cycle utility area of return Plausible Term The obligations piping Equipment routes Energy Costs The Environment net metering **Financial** Construction Costs electric Environment standby Escalation Labor **GHG REDUCTION** Costs DISASTER RESILIENCY TERNATIONAL

ASSOCIATIO

Incorporating Objectives and Constraints

Campus Master Planning to Manage Growth & OTHER Objectives

Developing Energy Master Plans Stakeholders Quest


- Project Initiators
- City, State and Federal Agencies
- Architect/Engineers/Planners
- Facility Managers
- Developers
- DE enterprises
- Financiers
 - Students Weight Students Stude

Questions

- What Technologies?
- How Big?
- How Soon?
- Economic Return?
- Environmental Impact?
- Resiliency?
- Energy Security?

3 North American EMP sites

3 North American EMP's

Campus	Systems	Location	Climate Zone (ASHRAE- IECC)
UC Davis	Power, Heating and Cooling	Davis, California, USA	Mediterranean
UT Austin	Power, Heating and Cooling	Austin, Texas, USA	Humid- subtropical
UBC	Power, Heating	Vancouver, BC, Canada	Oceanic

Drivers and Objectives

UC	Davis	UT	Austin	U	BC
•	Aging district heating and cooling systems	•	New fast-track Medical Campus	•	Aging steam system
•	UC Davis and U. of California's Policy on Sustainable Practices GHG targets	•	UT Austin GHG targets	•	UBC Climate Action Plan GHG targets
		•	Minimize system needs to meet new growth	•	Vancouver seismic risk
•	Improved Reliability & Efficiency	•	Improved Reliability & Efficiency Demand Side	•	Improved Reliability & Efficiency
			Efficiency		

Resiliency

_						
UC Davis			UT Austin		UBC	
•	Diverse heating supply solar thermal panels/ hot water		100% on-site generation N+1 redundancy for prime movers	•	Replaced old powerhouse with new facility designed for	
	boilers	•	Redundant electric interconnection to the Austin		seismic risk.	
•	Dual Fuel sources:		Energy grid	•	Fully redundant second electric	
	 biogas from landfill/biodige ster 	•	Thermalenergystoragetankforplannedandunplannedchilledwater		transmission line from grid.	
	2. Natural gas		outages Triple redundancy hot			
			 water loop 1. Heat pump chiller. 2. Hot water boilers when the heat pump chiller cannot operate due to low loads 3. Steam-to-hot-water plant served by the main campus CHP system. 		INTERNATIONAL DISTRICT ENERG ASSOCIATION	

Outcomes

UC Davis	UT Austin	UBC
 Solar Thermal - 17% of the CNPRC heating load option to expand • Supplemental gas-fired hot water boilers with a new heating hot water (HHW) distribution 	 Medical District power from existing UT Austin 134 MW CHP plant. Hot water system with a heat pump chiller and watertube boilers to provide 53,000 MBH 	 Converting steam to hot water Bioenergy Research and Demonstration Facility (BRDF) BRDF
 system to supply 83% of the heating load. Hot Water Thermal Energy Storage for 2000 gallons Additional electric chillers to provide cooling 	 A new15,000t on Chiller Station 5.5-million-gallon chilled water thermal energy storage tank to provide 5 MW peak load shifting capacity. 	 Facility close to 1 million dry tons of waste

Best Practices & Learnings from Energy Master Planning at 3 North American Universities

COOPERATION & PEOPLE

 Identify, involve, engage and manage stakeholders and drivers from the start and even through commissioning and first year of operation.

• Stakeholders - the list can be long!

University Staff from various units: Utility, Facility, Sustainability, Energy and Water Services, Project Services, Building Operations, Risk Management Services, Infrastructure Development, Campus Planning, Finance, Treasury, Legal Services, and Human Resources End User staff, Engineering Firm, Major Equipment Vendors

- Develop a well-rounded project team with major stakeholders included in decision making process
- Establish good, frequent communication
 - UBC BRDF located next to residential community
 - multiple public engagement events before construction
 - community emissions committee during the first year of operations
- Community engagement takes time and effort

DATA & ANALYSIS

- Using **real data** vs estimates or factors
- Determine what are the **critical functions for resiliency**
- Using Life Cycle Cost Analysis to evaluate the economics of proposed alternatives
- Aligning NPV with GHG reduction, reliability and redundancy objectives
- Design-build project delivery method to fast track and get budget flexibility through an open-book approach
- Proving the central plant concept rates for chilled water and hot water were less expensive than stand alone equipment in the respective buildings

ALIGNMENT & INTEGRATION

- EMP should align with Campus Master plans for growth and function
- Integrate Building Energy Conservation Measures into EMP
- Engage in long-term thinking and integrate local energy resources
- For expansions and modular campuses look for integration with existing energy systems
- The EMP process is an iterative planning process that involves people, technology and \$

Thank You

Laxmi Rao, International District Energy Association,

Collaborators

Juan Ontiveros, UT Austin

Joseph Yonkoski, UC Davis

Joshua Wauthy, & Paul Holt, University of British Columbia

