

NIST Handbook 135 - 2020 Revision: Life Cycle Costing Manual for the Federal Energy Management Program

Joshua Kneifel, PhD Economist Applied Economics Office Engineering Laboratory

Goal:

Provide computational support (methodology, data, software) for the analysis of capital investments in buildings based on current statutes and data

Resources:

- 1. Handbook 135 Life Cycle Costing Manual for FEMP
- 2. Annual Supplement to NIST HB 135 Energy Price Indices and Discount Factors for Life Cycle Cost Analysis
- 3. Energy Escalation Rate Calculator (EERC) software
- 4. Building Life Cycle Cost (BLCC) software

EERC: EXE transitioning to Web Interface in FY2021

BLCC: EXE (discussion of transitioning to Web Interface)

Annual Supplement: Updated each year with new EIA projections

Handbook 135: Revised Sept. 2020

Why revise Handbook 135?

- Last published in 1995
 - Yes, 25 years ago!
- Added historical context on legislation and E.O.s
 - EO 13123 (1999), EPACT (2005), EO 13423 (2007), EO13693 (2015)
 - Most recent is ÉO 13834 (2018)
 - What's required versus recommended / rule of thumb?
- Underlying LCC methodology remains unchanged
 - ASTM Building Economics Standards, 10 CFR 436
- Entire document revised and reorganized with relevant information and broadened scope
- Now a "living" document

NIST

Key Changes Include...

- The maximum study period was extended from 25 years to 40 years (2005)
- Options available for estimating residual value
- Greater discussion of difficult-to-value and/or non-monetary benefits and costs and uncertainty
- Greater focus on considerations for whole building/facility/campus evaluation and "bundling"
- More detail on energy savings performance contracts (ESPCs)
- List of resources for additional details on specific topics (140+ references)
- New examples explaining how to evaluate new project goals
 - Many actual project case studies on deep energy retrofits, sustainability, and resilience

Broadening of scope

- EO 13834 "agencies shall meet such statutory requirements in a manner that increases <u>efficiency</u>, optimizes <u>performance</u>, eliminates unnecessary use of <u>resources</u>, and protects the <u>environment</u>...each agency shall prioritize actions that reduce <u>waste</u>, cut <u>costs</u>, enhance the <u>resilience</u> of Federal infrastructure and operations, and enable more effective accomplishment of its <u>mission</u>."
- Optimize Overall Life Cycle Performance
 - Improve efficiency, resource use, human health, environmental impacts, sustainability, resilience, and productivity in a cost-effective manner

Project Scope and Goals / Constraints Examples

Scope

- Building System
- Building
- Facility
- Campus
- Community

Goals or Constraints

- LCC Savings
- Energy Reduction
- Water Reduction
- Renewable Energy Target
- Resilience Performance
- Embodied Energy/Carbon Reduction Targets

Additional (Relevant) Costs to Consider

Previous Analysis

- Initial Costs
- Maintenance & Repair Costs
- Operational Energy and Water Costs
- Replacement Costs
- Residual Value
 - Linear Depreciation

New Analysis Could Add

- Residual Value
 - Alternative methods
- Value of High Performance
 - Premium resale/rents
 - Productivity
 - Space Utilization
 - Risk Mitigation
- Non-Monetary Benefits
 - Emissions reductions
 - Human Health

New Examples

Deep Energy Retrofit

- Bundling
 - Energy Efficiency
 - Water Conservation
 - Smart Controls
 - Renewable Energy

On-site Renewable Energy

- Different Baseline Cases
- ESPC Option

Sustainability

- Direct Costs
- Externalities
 - Environmental Impacts

Resilience

- Bundling
 - Energy Reductions
 - On-site generation and storage
- Resilience as a Constraint
- Optimize over Resilience and LCC

Project Scope

- Evaluate economic & resiliency impacts of photovoltaics & storage on NYC fire station
- Optimization relative to BAU
- Short (2 hr) and Long (22 hr) Outage/Yr Scenarios
- LCC with and without resilience related cost savings
- Source: (Anderson et al., 2016)

Cost Data

Category	Solar PV	Storage	Diesel*			
Installation Cost	\$3.88/W _{DC}	\$520/kWh ,\$1000/W	\$1.50/W			
NYSERDA	\$0.80/kW					
Rebate						
Replacement		\$200/kWh				
Cost		, \$200/kW				
O&M Cost	\$20/kW/yr		\$0.02/kWh			
Fuel Cost			\$2.52/gal			
*Includes 250 gal storage capacity						

Grid Outage Cost

\$917.43/hr using DOE Interruption Cost Estimator

Based on Con Edison historical values from

- SAIFI (System Average Interruption Frequency Index or average number of interruptions to a customer)
- SAIDI (System Average Interruption Duration Index or average outage duration across all customers)
- CAIDI (Customer Average Interruption Duration Index or average outage duration per utility customer affected)

Alternatives to BAU Baseline

1. Solar photovoltaics + storage sized for economic savings; no resilience requirement imposed

- 2. Resilient solar photovoltaics + storage sized to meet resilience needs
- 3. Resilient solar photovoltaics + storage and a generator (hybrid system) sized to meet resilience needs
- 4. Generator sized to meet resilience needs

Scena	rio		Components		Costs and	Benefits	LCC
Alternative	Outage	PV (kW)	Battery	Diesel	Capital Costs	Resilience	NPV
	Duration		(kWh/kW)	(kW)		Value	
1	Short	10	43/16	-	\$69 413	\$0	\$22 365
PV + Battery	Short	10	43/16	-	\$69 413	\$31 767	\$54 132
(Economics)	Long*	-	-	-	-	-	-
2	Short	0	136/41	-	\$111 930	\$0	-\$12 070
PV + Battery	Short	10	131/40	-	\$138 828	\$22 219	\$10 149
(Resilience)	Long	10	613/40	-	\$389 706	\$0	-\$256 158
	Long	10	613/40	-	\$389 706	\$349 276	\$93 118
3	Short	4	73/18	23	\$102 328	\$0	\$0
PV + Battery +	Short	10	74/18	22	\$120 505	\$25 384	\$25 384
Diesel	Long	1	61/17	26	\$89 381	\$0	-\$1679
(Resilience)	Long	10	66/20	24	\$121 164	\$346 527	\$344 848
4	Short	-	-	41	\$61 620	\$0	-\$51 731
Diesel	Short	-	-	41	\$61 620	\$31 767	-\$19 964
(Resilience)	Long	-	-	41	\$61 620	\$0	-\$52 896
	Long	-	-	41	\$61 620	\$349 276	\$296 380

* Alternative 1 did not include the 22-hour outrage scenario.

Summary

Alt 1 is preferred when no resilience value is included

Alt 3 is the preferred option regardless of the scenario relative to Alt 2 or Alt 4

• lower costs of diesel generators and operation than battery storage (2016)

Scenario	2 hr outage/yr;	22 hr outage/yr;	2 hr outage/yr;	22 hr outage/yr;
	no resilience value	no resilience value	resilience value	resilience value
Alternative 1	\$22 365	-	\$54 132	-
Alternative 2	-\$12 070	-\$256 158	\$10 149	\$93 118
Alternative 3	\$0	-\$1679	\$25 384	\$344 848
Alternative 4	-\$51 713	-\$19 964	-\$52 896	\$296 380

Summary

• Handbook 135 has been revised

- Life cycle cost methodology for capital projects
- Provide relevant information and examples
- Broaden scope as defined in legislation and E.O.s
- Deep Energy Retrofits and Sustainability
 - Bundling of energy efficiency, water conservation, and renewable energy measures
 - Consideration to additional types of costs/savings
- Resilience
 - Resilience Requirements as a Constraint
 - Resilience Benefits as a decrease in life cycle costs

For further information...

Joshua Kneifel, PhD joshua.kneifel@nist.gov

NIST EL Applied Economics Office

http://www.nist.gov/el/economics/

FEMP Building Life Cycle Cost Program

https://www.energy.gov/eere/femp/building-life-cycle-cost-programs

Anderson et al., (2016)

Anderson, K., Burman, K., Simpkins, T., Helson, E., Lisell, L., & Case, T. (2016). *New York Solar Smart DG Hub-Resilient Solar Project: Economic and Resiliency Impact of PV and Storage on New York Critical Infrastructure*. Retrieved from https://www.nrel.gov/docs/fy160sti/66617.pdf:

Savena et al., (2017) Savena, M., Judson, N., & Pina, A. (2017). The Cost of Energy Security and Resilience. In. <u>https://www.energy.gov/sites/prod/files/2017/11/f46/25-fupwgfall2017_savena_judson_pina_rev.pdf</u>: 2017 Fall Federal Utility Partnership Working Group Seminar